Global Behavior of a Nonlinear Difference Equation with Applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION

In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

Global Attractivity in a Nonlinear Difference Equation

In this paper, we study the asymptotic behavior of positive solutions of the nonlinear difference equation xn+1 = xnf(xn−k), where f : [0,∞)→ (0,∞) is a unimodal function, and k is a nonnegative integer. Sufficient conditions for the positive equilibrium to be a global attractor of all positive solutions are established. Our results can be applied to to some difference equations derived from ma...

متن کامل

behavior of solutions to a fuzzy nonlinear difference equation

in this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{ax_n+x_{n-1}}{b+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $a, b$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

Global Behavior of the Difference Equation

The main objective of this paper is to study the qualitative behavior for a class of nonlinear rational difference equation. We study the local stability, periodicity, Oscillation, boundedness, and the global stability for the positive solutions of equation. Examples illustrate the importance of the results Keywords— Difference equation, stability, oscillation, boundedness, globale stability an...

متن کامل

Global behaviour of a second order nonlinear difference equation

We describe the asymptotic behaviour and the stability properties of the solutions to the nonlinear second order difference equation xn+1 = xn−1 a + bxnxn−1 , n ≥ 0, for all values of the real parameters a, b, and any initial condition (x−1, x0) ∈ R .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Discrete Mathematics

سال: 2012

ISSN: 2161-7635,2161-7643

DOI: 10.4236/ojdm.2012.22014